6.5
 Trapezoids and Kites

Review

A quadrilateral with exactly one pair of parallel sides

Review

A quadrilateral with exactly one pair of parallel sides

Trapezoid Consecutive Angle Theorem

 Consecutive angles between bases are

Base angles in an isosceles trapezoid are

Isoscelles Trapezoid Diagonals Theorem

 in an isosceles trapezoid are
Review

A segment connecting the midpoints of two sides of a triangle

[^0]
Review

A quadrilateral with exactly 2 pairs of distinct congruent consecutive sides

Diagonals of a kite are

$\sum_{i n k}^{2 p o r}$
 The diagonal connecting the vertex angles the non-vertex angle diagonal

 Non-vertex angles of a kite are

The vertex angles of a kite are
by the vertex diagonal

Challenge

Try to draw as many non-congruent quadrilaterals as you can by connecting the dots. After drawing each, identify the type of quadrilateral that it is.

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

0	0	0
0	0	0
0	0	0

$\bullet \bullet$	\bullet	\bullet
\bullet	\bullet	\bullet

Challenge

Try to draw as many non-congruent quadrilaterals as you can by connecting the dots. After drawing each, identify the type of quadrilateral that it is.

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

0	0	0
0	0	0
0	0	0

$\bullet \bullet$	\bullet	\bullet
\bullet	\bullet	\bullet

Challenge

Try to draw as many non-congruent quadrilaterals as you can by connecting the dots. After drawing each, identify the type of quadrilateral that it is.

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

0	0	0
0	0	0
0	0	0

$\bullet \bullet$	\bullet	\bullet
\bullet	\bullet	\bullet

Challenge

Try to draw as many non-congruent quadrilaterals as you can by connecting the dots. After drawing each, identify the type of quadrilateral that it is.

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

0	0	0
0	0	0
0	0	0

$\bullet \bullet$	\bullet	\bullet
\bullet	\bullet	\bullet

Challenge

Try to draw as many non-congruent quadrilaterals as you can by connecting the dots. After drawing each, identify the type of quadrilateral that it is.

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet

0	0	0
0	0	0
0	0	0

$\bullet \bullet$	\bullet	\bullet
\bullet	\bullet	\bullet

[^0]: $\sum_{\substack{\text { Poik } \\ \text { M }}}^{2}$
 The to the bases and its length is the of the two bases.

